
Panel 2026

Load Calculation Software

Instructions

Manua

Copyright 2025 Durand & Associates

PANEL 2026

COPYRIGHT 2019 - DURAND & ASSOCIATES

This software and manual are protected by Federal Copyright Laws and may not be copied or duplicated for the purpose of resale or distribution. A registered user may copy the template files for their own personal use provided they retain sole possession of such copies.

The **Panel 2026** software is a spreadsheet template software program for calculating panel loads, transformer sizes, sub panels, and feeder sizes. This program may be used for industrial and commercial loads. The **Panel 2026** software is for reference purposes only, and Durand & Associates cannot assume any responsibility for the accuracy of the programs content. In using this program the user agrees to hold harmless and wave all claims against Durand & Associates.

SOFTWARE REQUIREMENTS

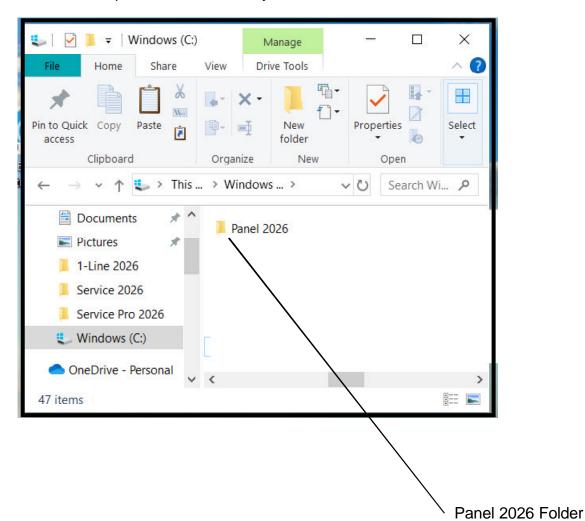
Panel 2026 was created with Microsoft Excel 2007. To use these templates you must have Microsoft Excel (Version 2007 or later) installed on your computer.

The Panel 2026 files are located on your C drive @ C:\Panel 2026

INTRODUCTION

The **Panel 2026** software is a spreadsheet template program. The program was designed for use in conjunction with Microsoft Excel on the Windows platform. The program should also work on other platforms that can read and write Microsoft Excel file formats.

LOADING THE PROGRAM

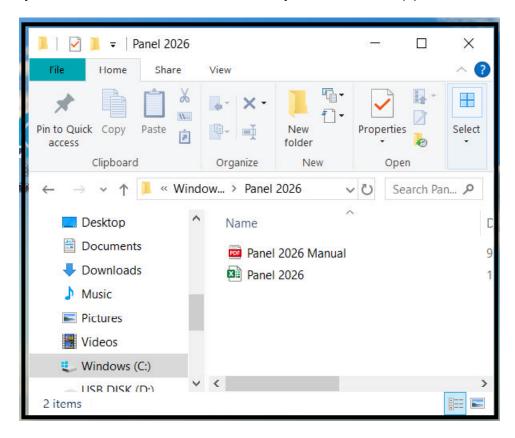

Insert the CD in your drive and follow the setup instructions.

The installation of Panel 2026 will create the following folder on your C drive.

C:\Panel 2026

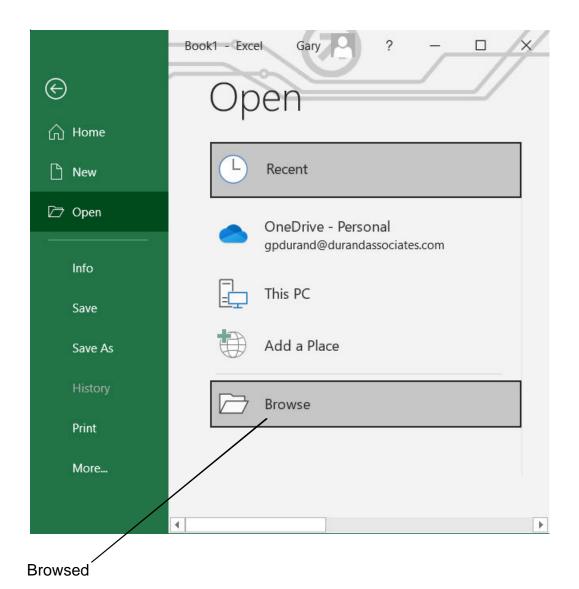
LOCATING THE PROGRAM FILES

The Panel templates are located on your C: drive.

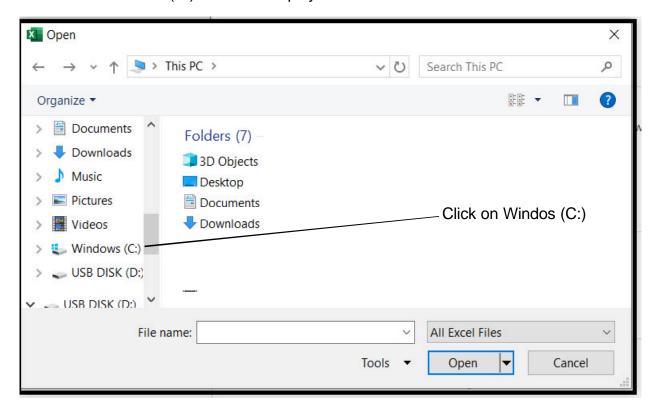


EXCEL FILE TYPES

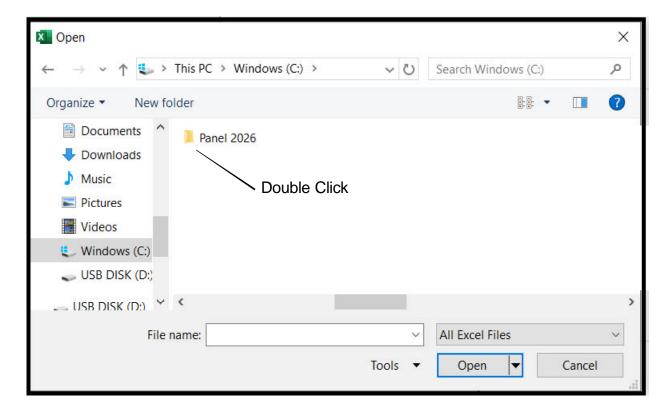
Microsoft continues to change the file formats for the various versions of their Excel Applications. Panel 2026 dose not support the Old Excel XLS file format. Panel 2026 uses the New Excel XLSX file format.


LOCATING THE PROGRAM FILES

If you double click on the Panel folder, you will find two (2) files.

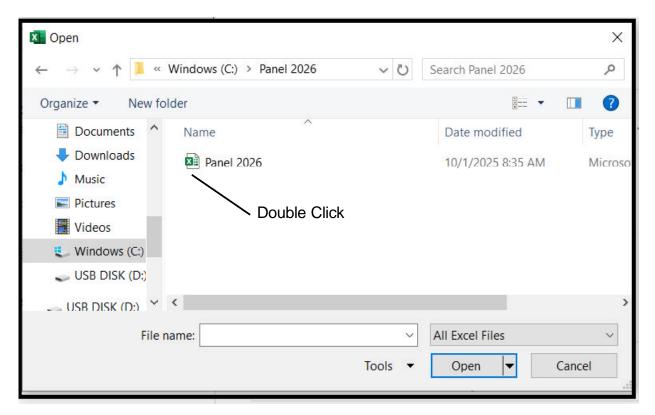

USING THE PROGRAM

Select the FILE OPEN (Ctrl + O) command and then click BROWSE

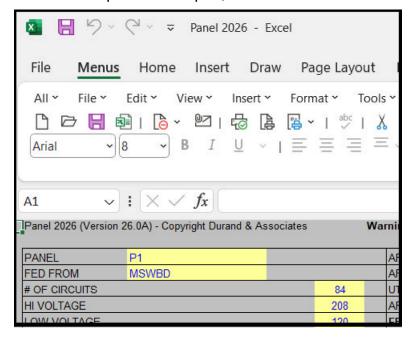


USING THE PROGRAM

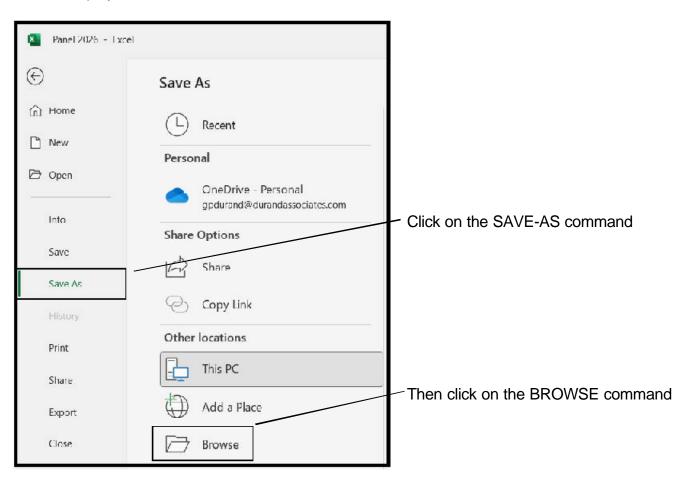
Click on the Windows (C:) which will display the contents of the C drive.



Locate the Panel 2026 folder on the C drive and DOUBLE CLICK on that folder.

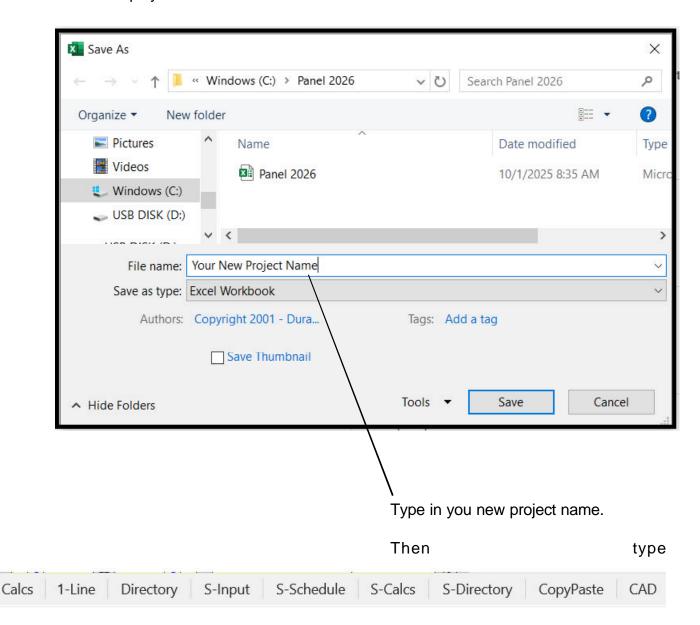

USING THE PROGRAM

Double click on the Panel 2026 icon to open the template file.

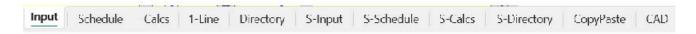


SAVING THE FILE

After the template file is open, click on the FILE command.



This will display the SAVE-AS comand


SAVING THE FILE

This will display the SAVE-AS window

USING THE TABS

The template has thirteen (10) tabs.

The first five tabs are for the Panel and the next four tabs are for the Sub Panel.

Each tab has a special purpose:

Panel Tabs

Input - This sheet is used to enter information.

Schedule - This sheet is used to review and print the panel schedule.

Calcs - This sheet is used to review and print the load calculations.

1-Line - This sheet is used to review and print the 1-Line drawing.

Directory - This sheet is used to review and print the circuit directory.

Sub Panel Tabs

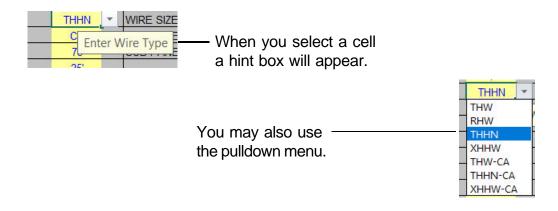
S-Input - This sheet is used to enter information.

S-Schedule - This sheet is used to review and print the subpanel schedule.

S-Calcs - This sheet is used to review and print the subpanel load calculations.

S-Directory - This sheet is used to review and print the subpanel circuit directory.

Misc Tabs


Copy/Paste - This sheet explains the Pate Values command for Excel.

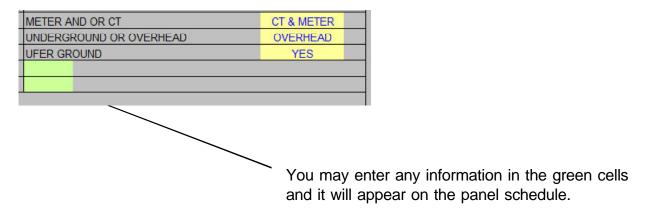
CAD - This sheet explains how to use the Copy Picture command and paste into a CAD program.

сетаin ceils. It you are using a color monitor, these ceils are yellow or ilme green.

PANEL	P1		AFC CALCULATION METHOD	MANUAL
FED FROM	MSWBD		AFC AT STARTING POINT	35,000
# OF CIRCUITS		84	UTILITY VOLTAGE ADJUSTMENT	1.1
HI VOLTAGE		208	AFC AT THIS PANEL	14,361
LOW VOLTAGE		120	FEEDER	
PHASE		3Y	NUMBER OF CONDUITS	1
			FEEDER CONDUIT	1 1/4"
NEUTRAL SIZE		FULL	WIRE SIZE L1	#3
			WIRE SIZE L2	#3
GND WIRE Y/N		Υ	WIRE SIZE L3	#3
WIRE TYPE		THHN	WIRE SIZE NEUTRAL	#3
WIRE CU/AL?		CU	WIRE SIZE GROUND	#8
WIRE TEMP C		75	SUB PANEL PHASE	NONE
WIRE LENGTH		25'		
CONDUIT TYPE		EMT	CODE YEAR	2026
MINIMUM AMPS	8	100	DISPLAY FAULT CURRENT	YES
			DISPLAY VOLTAGE DROP	YES
# KITCHEN LOA	NDS	0		
% FACTOR		0	METER AND OR CT	CT & METER
			UNDERGROUND OR OVERHEAD	OVERHEAD
MAIN BKR / FU	SE	N	UFER GROUND	YES
BREAKER SIZE		NONE		
		\ /		
		\ /		

Each unprotected yellow cell requires a user entry. If an invalid entry is made, a RED error message will appear to the left of the entry or an error message will appear in a pop up box.

Below is a list of valid entries for the general information section of the panel schedule.


PANEL	P1	Enter the panel name such as LPA. If entry is too long it may be cut off when printed. (As a general rule 22 characters are allowed.)
FED FROM	MSWBD	Enter the power source for this panel.
# OF CIRCUITS	30	Enter number of circuits. (Even number from 6 to 84) or use the pulldown menu.
HI VOLTAGE	480	Enter line to line voltage.
LOW VOLTAGE	277	Enter line to neutral voltage
PHASE	3Y	Enter phase. Note: You may put a 1-Phase panel on a 3-Phase source.
HI-LEG SIZE	AUTO	Select Auto or Full. (3-Phase Delta Only)
NEUTRAL SIZE	AUTO	Select Auto, Full or Minimum
		Most of the time you will select Full and the neutral conductor will be sized the same as the line conductor. If you select Auto, the neutral will be sized per NEC requirements. If you select Minimum, you must identify each line to neutral circuit with a (N) on the panel schedule.
MIN NET AMPS	60	You may enter zero and the program will calculate the proper wire size. You may also enter a minimum value and the program will use the minimum value. If the minimum value is less than the neutral load, the program will size the neutral to handle the neutral load. The program will size the neutral to carry at least 34 percent of the line conductors per NEC requirements.
GND WIRE Y/N	Y	Enter Y or N. If you enter Y, an equipment ground conductor will be added to the feeder conduit(s).
WIRE TYPE	THHN	Select the wire type.
WIRE CU/AL?	CU	Enter CU or AL.

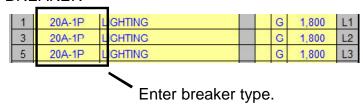
Below is a list of valid entries for the general information section of the panel schedule.

WIRE TEMP	75	Enter the wire insulation temperature.
WIRE LENGTH	20	Enter wire length.
CONDUIT TYPE	EMT	Select conduit type.
MINIMUM AMPS	100	Enter minimum amps. If the load exceeds the minimum amps, the program will automatically size the wire for Code requirements.
MINIMUM AMPS (L2)	100	Enter minimum amps for hi-leg (L2). If the load exceeds the minimum amps, the program will automatically size the wire per Code.
KITCHEN LOADS	5	Enter the number of kitchen loads.
% FACTOR	20	Enter percentage factor. Example: If you enter 20, the program will provide 20% spare capacity for future loads. You may also use this factor to adjust for voltage drop.
% FACTOR (L2)	20	Enter percentage factor for hi-leg (L2). Example: If you enter 20, the program will provide 20% spare capacity for future loads. You may also use this factor to adjust for voltage drop.
MAIN BKR / FUSE	Y	Enter Y or N. If you enter Y, the program will size the main breaker. If this is a 3-phase delta panel with a reduced size hi-leg (L2), the program will size overcurrent protection using fuses.
AFC METHOD	MANUAL	Select MANUAL if you want to calculate the fault current. Select NONE if you do not wish to have fault current calculations.
AFC START POINT	42000	Enter the Available Fault Current (AFC)
UTILITY ADJUST	1.1	Select 1.0 or 1.1 Utility voltages may vary

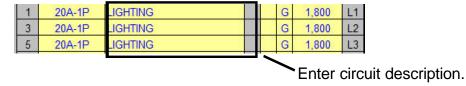
Utility voltages may vary +/- 10% for power. Therefore for worst case conditions enter 1.1 as the utility voltage adjustment.

SUB PANEL BKR 3-PHASE	Select choice from pulldown menu. If you want a sub panel fed from this panel, select 1-Phase or 3-Phase.
BREAKER POSITION 1, 3. 5	If you have a subpanel, select the breaker position from the pulldown menu.
CODE YEAR 2008	Select the Code year from the pulldown menu.
DISPLAY FAULT CURRENT YES	Select yes or no from the pulldown menu. If you select yes the fault current calculations will appear on the Cacl's page.
DISPLAY VOLTAGE DROP YES	Select yes or no from the pulldown menu. If you select yes, the voltage drop calculations will appear on the Cacl's page.
METER AND OR CT CT & METER	Select "CT & METER", "METER", "NO METER"
UNDERGROUND OVERHEAD OR OVERHEAD	Select "OVERHEAR" or 'UNDERGROUND"
UFER GROUND YES	Select "YES", or "NO"

DISPLAY ONLY

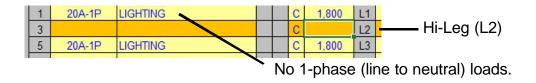

Also, in the general information section there are a group of cells displaying wire and conduit size information. These cells only display information when no errors are present in the template.

AFC AT THIS PANEL	14,361
FEEDER	
NUMBER OF CONDUITS	1
FEEDER CONDUIT	1 1/4"
WIRE SIZE L1	#3
WIRE SIZE L2	#3
WIRE SIZE L3	#3
WIRE SIZE NEUTRAL	#3
WIRE SIZE GROUND	#8


CIRCUIT ENTRIES

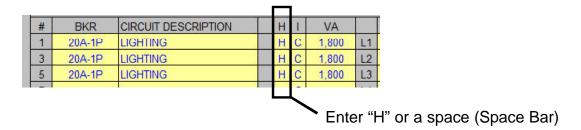
Once you have completed the general entries, you may begin making the circuit entries. Each circuit entry consists of the following:

BREAKER


CIRCUIT DESCRIPTION

CIRCUIT ENTRIES (continued)

3-PHASE DELTA CIRCUITS


If you are entering 1-phase (line to neutral loads) on a 3-phase delta panel, do not put them in the orange cells.

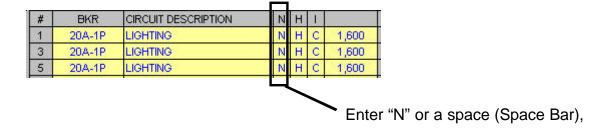
LOAD IDENTIFIERS

H (HARMONIC LOAD)

On 3-phase wye panels loads subject to harmonic currents (such as electronic ballast and computer equipment) must be identified by placing an "H" in the harmonic identifier column.

HOW THE PROGRAM CALCULATES HARMONIC LOADS.

When the harmonic load is 50% or more of the load (on 3-phase wye panels) the NEC requires the neutral conductor to be considered a current carrying conductor.


Therefore, the feeder conduit has four (4) current carrying conductors and the conductor ampacity must be derated to 80%. The program does this automatically.

LOAD IDENTIFIERS (continued)

NEUTRAL LOADS

If you have selected MINIMUM for neutral sizing, the program will calculate the neutral load and size the neutral separate from the line conductors. This is known as reduced neutral sizing.

For this to work properly you need to identify each line to neutral load in the panel.

HOW THE PROGRAM CALCULATES NEUTRAL CONDUCTOR SIZE

In the auto sizing mode the largest line to neutral load is the ampacity used. The neutral conductor is sized on that load or 34% of line conductor ampacity per Code requirements.

CIRCUIT LOAD IDENTIFIERS

There are several ways to identify loads. Listed below are the options.

- G General Load
- D Receptacle Load (Diversity)
- C Continuous Load
- K Kitchen Load
- M Motor Load

1 20A-1P LIGHTING N H C 1,600 3 20A-1P LIGHTING N H C 1,600	1 20A-1P LIGHTING N H C 1,600	1 20A-1P LIGHTING N H C 1,600 3 20A-1P LIGHTING N H C 1,600	ш	DIZD	OIDOLIIT DECODIDIION	NI.	11	100		
3 20A-1P LIGHTING N H C 1,600	3 20A-1P LIGHTING N H C 1,600	3 20A-1P LIGHTING N H C 1,600	#	BKR	CIRCUIT DESCRIPTION	N	Н		<u> </u>	
			1	20A-1P	LIGHTING	N	Н	C	1,600	
E 000 4B U1017810	5 20A-1P LIGHTING N H C 1,600	5 20A-1P LIGHTING N H C 1,600	3	20A-1P	LIGHTING	N.	H	C	1,600	
5 20A-1P LIGHTING N H C 1,600			5	20A-1P	LIGHTING	N.	H	C	1,600	
Ц										
									Enter (GDCK c	۱r
Enter (G. D. C. K.)	Enter (G, D, C, K, or	Enter (G. D. C. K. or								′'

ENTERING CIRCUIT LOADS

LINE TO NEUTRAL LOADS (1-Pole Breaker)

#	BKR	CIRCUIT DESCRIPTION	N	Н	1	VA	
1	20A-1P	LIGHTING	N	Н	С	1,800	L1
3					G		L2
5					G		L3

Enter the VA (Volts X Amps) into the cell.

LINE TO LINE LOADS (2-Pole Breaker)

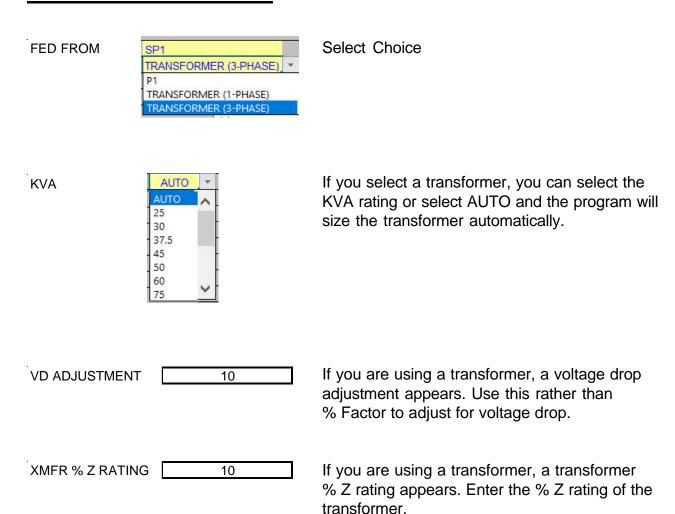
Enter one half of the VA in each cell.

#	BKR	CIRCUIT DESCRIPTION	N	Н	1	VA	
1	50A-2P	AC UNIT	,e - 3	8 8	M	6,000	- 63
3	XXX	XXX			M	6,000	
5		7 6			G		100

Example: (50 Amps X 240 Volts) = 12,000 VA

 $(12,000 \text{ VA} \div 2) = 6,000 \text{ VA}$ in each cell

LINE TO LINE LOADS (3-Pole Breaker)


Enter one third of the VA in each cell.

#	BKR	CIRCUIT DESCRIPTION	N	Н	1	VA	
1	XXX	XXX	50	vi i	M	4,803	L1
3	50A-2P	AC UNIT			M	4,803	12
5	XXX	XXX			M	4,803	L3

Example: (40 Amps X 208 Volts X 1.732) = 14,410 VA

 $(14,410 \text{ VA} \div 3) = 4,803 \text{ VA in each cell}$

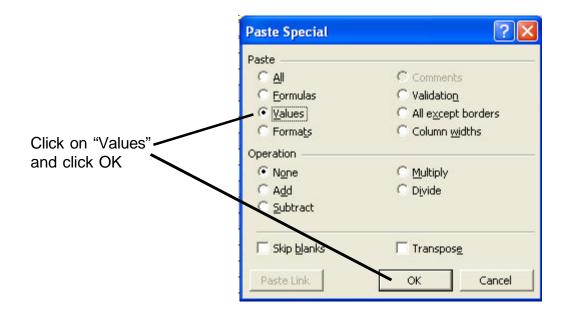
SUB PANEL GENERAL ENTRIES

PRINTOUTS

Each panel schedule template is designed to print out four (4) sheets for the panel and four (4) sheets for the sub panel.

- Panel Schedule
- Load Calculation
- Directory

Using the mouse, click on the tab to display the sheet you wish to print. When the sheet is displayed, use the FILE/PRINT command.


NO COPY/PASTE

Do not use the COPY and PASTE commands on this template as they can corrupt the file.

Each cell in this template has been formatted with error checking and performance codes. When you copy a cell and use the paste command, these formats and performance codes are pasted to the new location.

PASTE SPECIAL (Values Only)

To avoid corrupting the file use the COPY and the EDIT/PASTE SPECIAL command selecting VALUES from the paste special menu.

